Identification of domains of BRCA1 critical for the ubiquitin-dependent inhibition of centrosome function.
نویسندگان
چکیده
The breast and ovarian cancer specific tumor suppressor BRCA1, bound to BARD1, has multiple functions aimed at maintaining genomic stability in the cell. We have shown earlier that the BRCA1/BARD1 E3 ubiquitin ligase activity regulates centrosome-dependent microtubule nucleation. In this study, we tested which domains of BRCA1 and BARD1 were required to control the centrosome function. In the present study, (a) we confirmed that the ubiquitination activity of BRCA1 regulates centrosome number and function in Hs578T breast cancer cells; (b) we observed that both the amino and carboxyl termini of BRCA1 are required for regulation of centrosome function in vitro; (c) an internal domain (770-1,290) is dispensable for centrosome regulation; (d) BARD1 is required for regulation of centrosome function and protein sequences within the terminal 485 amino acids are necessary for activity; and (e) BARD1 is localized at the centrosome throughout the cell cycle. We conclude that the BRCA1-dependent E3 ubiquitin ligase functions to restrain centrosomes in mammary cells, and loss of BRCA1 in the precancerous breast cell leads to centrosomal hypertrophy, a phenotype commonly observed in incipient breast cancer.
منابع مشابه
The BRCA1/BARD1 Heterodimer Modulates Ran-Dependent Mitotic Spindle Assembly
The heterodimeric tumor-suppressor complex BRCA1/BARD1 exhibits E3 ubiquitin ligase activity and participates in cell proliferation and chromosome stability control by incompletely defined mechanisms. Here we show that, in both mammalian cells and Xenopus egg extracts, BRCA1/BARD1 is required for mitotic spindle-pole assembly and for accumulation of TPX2, a major spindle organizer and Ran targe...
متن کاملEstrogen receptor is a putative substrate for the BRCA1 ubiquitin ligase
The breast cancer suppressor protein, BRCA1, is a ubiquitin ligase expressed in a wide range of tissues. However, inheritance of a single BRCA1 mutation significantly increases a woman’s lifetime chance of developing tissue-specific cancers in the breast and ovaries. Recently, studies have suggested this tissue specificity may be linked to inhibition of estrogen receptor (ER ) transcriptional a...
متن کاملDirect binding with histone deacetylase 6 mediates the reversible recruitment of parkin to the centrosome.
Histone deacetylase 6 (HDAC6), a microtubule-associated tubulin deacetylase, plays a significant role in the formation of protein aggregates in many neurodegenerative disorders. Parkin, a protein-ubiquitin E3 ligase linked to Parkinson's disease, accumulates at the centrosome in a microtubule-dependent manner in response to proteasome inhibition. Here, we show that the centrosome recruitment of...
متن کاملNeurobiology of Disease Direct Binding with Histone Deacetylase 6 Mediates the Reversible Recruitment of Parkin to the Centrosome
Histone deacetylase 6 (HDAC6), a microtubule-associated tubulin deacetylase, plays a significant role in the formation of protein aggregates in many neurodegenerative disorders. Parkin, a protein-ubiquitin E3 ligase linked to Parkinson’s disease, accumulates at the centrosome in a microtubule-dependent manner in response to proteasome inhibition. Here, we show that the centrosome recruitment of...
متن کاملMolecular and Cellular Pathobiology Deubiquitination of g-Tubulin by BAP1 Prevents Chromosome Instability in Breast Cancer Cells
Microtubule nucleation requires the g-tubulin ring complex, and during the M-phase (mitosis) this complex accumulates at the centrosome to support mitotic spindle formation. The posttranslational modification of g-tubulin through ubiquitination is vital for regulating microtubule nucleation and centrosome duplication. Blocking the BRCA1/BARD1-dependent ubiquitination of g-tubulin causes centros...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 66 8 شماره
صفحات -
تاریخ انتشار 2006